Publikationen

2025

2024

2023

  • J. Berberich, D. Fink, D. Pranjić, C. Tutschku, C. Holm (2023). “Training robust and generalizable quantum models”.
    url: https://doi.org/10.48550/arXiv.2311.11871
  • D. Klau, H. Krause, D. A. Kreplin, M. Roth, C. Tutschku, M. Zöller (2023). “AutoQML – A Framework for Automated Quantum Machine Learning”.
    url: https://www.digital.iao.fraunhofer.de/content/dam/iao/ikt/de/documents/AutoQML_Framework.pdf
  • D. Klau, M. Zöller, C. Tutschku (2023). “Bringing Quantum Algorithms to Automated Machine Learning: A Systematic Review of AutoML Frameworks Regarding Extensibility for QML Algorithms”.
    url: https://doi.org/10.48550/arXiv.2310.04238.
  • G. Koßmann, L. Binkowski, C. Tutschku, R. Schwonnek (2023). “Open-Shop Scheduling with Hard Constraints”.
    url: https://doi.org/10.48550/arXiv.2211.05822.
  • H. Stühler, M.-A. Zöller, D. Klau, A. Beiderwellen-Bedrikow, C. Tutschku (2023). “Benchmarking Automated Machine Learning Methods for Price Forecasting Applications”.
    url: https://doi.org/10.5220/0012051400003541.
  • A. Sturm (2023). “Theory and Implementation of the Quantum Approximate Optimization Algorithm: A Comprehensible Introduction and Case Study Using Qiskit and IBM Quantum Computers”.
    url: https://doi.org/10.48550/arXiv.2301.09535.
  • C. Tutschku, A. Sturm, F. Knäble, B. C. Mummaneni, D. Pranjic, C. Stephan, D. B. Mayer, G. Koßmann, M. Roth, P.-A. Matt, A. Grigorjan, T. Wellens, K. König, M. Beisel, F. Truger, F. Shagieva, O. Denninger, S. Garhofer (2023). “Quantencomputing in der industriellen Applikation. Vom Algorithmen-, Markt- und Hardwareüberblick hin zu anwendungszentriertem Quantensoftware-Engineering“.
    url: https://doi.org/10.24406/publica-805.

2022

  • P.-A. Matt, R. Ziegler, D. Barjovic, M. Roth, M. F. Huber (2022), “A Nested Genetic Algorithm for Explaining Classification Data Sets with Decision Rules”. url:  https://doi.org/10.48550/arXiv.2209.07575

Nach oben scrollen